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Abstract 
In this paper, the neural network algorithm was employed in 

the restoration of image. Here the motion compensation in image 
was viewed as an ANN (Artificial Neural Network) energy 
minimization problem, and the EHE criteria (Eliminating Highest 
Error) was selected as the optimization objection of reconstruction 
problem. With the actual situation in image, neural network was 
designed in continuous work-mode. Meanwhile, optimal solution 
was found by minimizing the energy function for the objective 
function. With some typical images, the algorithms above were 
experimented in computer. The result proved the efficiency of 
neural network in the processing of motion restoration. 

Introduction 
In photograph process, the digital images can be easily 

degraded for many reasons, which often causes a lot of inconvenient 
use! 

In the real, Motion is one of the common reasons that the make 
the images degraded. For example, relative motion is caused 
between the camera and the object. All of the restoration steps are 
tend to facilitate researchers for many areas. Therefore it is 
significant to solve this problem in a correct and efficient way.  

Classical Algorithms of Restoration 
In the typical situation, the image degradation can be modeled 

by a linear blur (such as motion, defocusing, atmosphere 
turbulence), and sometimes an additive white Gaussian noise. And 
the degradation model is given as follows:  
     g Hf n= +           (1) 

where g , f , n  represent degraded image, original image and 
addictive noise respectively, and H represents linear spatially 
invariant or spatially varying distortion . 

With this suitable model and an optimality criterion, digital 
image restoration means to improve the degraded image to be the 
original one as close as possible. 

The classical algorithms to recover the motion-degraded image 
include Wiener filter, constrained least square criterion, maximum 
entropy and so on. All of them can be basically divided into two 
kinds, time-domain algorithms and frequency-domain ones. Most of 
these time-field algorithms restore the degraded image by supposing 
the physical model of degradation, and processing the raw image 
with the opposite way, while the frequency-field algorithms restore 
the degraded image with an appropriate filter. 

Many researches in image restoration techniques had focused 
on these two domains. Although many classical algorithms were 
proposed and once worked in vogue, there were still many 
problems to some extent.  

On one hand, the Point-Spread Function (PSF) should be 
exactly known in advance for traditional image restoration methods. 
In fact, most PSF of degraded image can not been defined easily 
before processing. According to a partly relative PSF and little prior 
knowledge, the raw image can be just estimated from the degraded 
one.  

On the other hand, image restoration is one of a class named 
ill-posed problem, and its morbidity cannot be solved well with the 
traditional or classical algorithms. So they are very hard to settle the 
problems of motion compensation. Some new methods are needed 
to process this kind of images. 

Neural Network Algorithm 
In the last several years, neural network theory, as a valuable 

tool for constrained optimization problems, has being proposed as 
new computational tools of image motion compensation. Because 
of its advantages such as parallel processing, self-adaptive function, 
and half-baked data process ability, neural network algorithms are 
superior to the traditional ones in many aspects.  

The processing power of biological neural network’s lies in a 
large amount of neurons linked with synaptic weights. Motivated by 
this, artificial neural network models attempt to achieve good 
performance via dense interconnection among many simple 
computational elements.  

For several kinds of neural network models, Hopfield neural 
network is widely used in image restoration with its outstanding 
merits. As a result, image restoration technology based on the 
Hopfield network, not only makes mainly use of the network’s 
advantage of solving optimization problems, but also its high 
performance and effectiveness.  

A Hopfield Artificial Neural Network (ANN) model involves 
two major operations: broadcasting a value to a set of processors 
and adding all of their values. With Hopfield network’s advantage 
of energy minimization properties, a common strategy for image 
restoration is to map the image error function of optimization 
problem into the energy function of a predefined network.  

The objective function for image restoration problem is 
defined as follow:  
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where y and x are the degraded image and the restorated one 
respectively, H is the blur matrix defined by the PSF, S is an 
operator like Laplacian one.  

The Hopfield neural network model consists of n 
interconnected nonlinear devices (neurons). Interconnection 
weight , 1,..., , 1,...,ijw i n j n= = are associated with neurons i and j . 

Here a bias of the network or threshold term ib  is attached to each 

neuron. The state of network at time t is denoted 
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Where ( ) 1, 0G u u= ≥ or ( ) 0, 0G u u= < . 

With ANN technology, the image quality is great improved, 
and the ring effect is much released. However, through theoretic 
analysis of Hopfield neural network, two lacks can be found: the 
conditions of image restoration technology with Hopfield network 
should have known PSF, and there is none hypothesis of noise types 
in the network. In this situation, many modified Hopfield neural 
networks have been proposed. 

Experiment and Results 
In this paper, Hopfield neural network is applied into the image 

motion compensation to make the degraded images much clear and 
efficient. A classical image-cameraman with 256*256 is chosen. In 
MATLAB, some blurred images are simulated with different 
motion distance. Here the pixel numbers is used to stand for the 
relative motion distance: 0.1, 1, 5, 10pixels. The precise PSF can be 
obtained, and the experiments are carried out with Hopfield 
algorithm. 

During the restoration of the motion image with Hopfield 
network, a question should be considered at first: the criterion 
selection. In this paper, the EHE (Eliminating Highest Error) 
criterion is chosen to make the network run much efficiently. The 
criterion is described as follows: 

EHE criterion A: When the Hopfield network runs in 
sequential update mode, the only neuron to be updated at each step 
is the one whose back projection error is the highest in all the 
updateable neurons.[4]. 

By this way, motion compensation of image can be viewed as 
an ANN energy minimization problem, and the EHE criterion is 
selected as the optimization objection of reconstruction problem. 
Through mapping the objective function onto the energy function, a 
Hopfield neural network is designed in continuous work-mode. 
This mode can make the minimal point of the energy function match 
the optimization image well. Also an optimal solution can be found 
by minimizing the energy function.  

In order to test noise effect of the algorithm, some additive 
white Gaussian noise is applied. Then these blurred images are 
simulated in MATLAB again.  

Here are the results: 
Firstly, some blurred images are simulated with relative 

motion distance. The simulation result is showed as the Fig.1. 

 
Fig.1 The simulated motion image cameraman with 10 pixels 

Secondly, the blurred image is restored with the Hopfield 
network. It can be seen in Fig 2 that the restored image’s quality 
with Hopfield neural network is improved. 

 
Fig.2 The restored image cameraman 

From the figures above, it is seen that Hopfield network with 
the EHE criterion restores the motion image well when PSF is 
known. Also most of the details blurred by the motion can be clearly 
seen after the restoration. 

Due to the PSF information can be obtained easily and 
correctly as the blurring process clearly defined before. For the sake 
of testing the effectiveness of the algorithm, the PSF types and 
parameters are roughly estimated for an image taken by a 25~30m/s 
camera.  

The blurred image is showed as Fig.3: 

 
Fig.3 The real motion image  

According to the estimated PSF, the network designed before 
is used to restore the blurred image. The restored result is showed 
as Fig.4: 

 
Fig.4 The restored image 



 

 

Comparing with Fig.3 and 4, it can be seen that the details in 
Fig.4 is clearer than that in Fig.3, in spite of the details in Fig.3 very 
complex. 

Conclusion and Expectation 
The experiment results show that this restoration model is 

effective, and the process speed is fast. 
Neural network models have great potential in areas of 

parallel, high computation rates. Therefore, although the current 
best network systems are far from human performance, the image 
restoration from a degraded record is still a good application for 
neural network. 
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